A Bound for the 3-part of Class Numbers of Quadratic Fields by Means of the Square Sieve

نویسنده

  • LILLIAN B. PIERCE
چکیده

We prove a nontrivial bound of O(|D|27/56+ ) for the 3-part of the class number of a quadratic field Q( √ D) by using a variant of the square sieve and the q-analogue of van der Corput’s method to count the number of squares of the form 4x3− dz2 for a square-free positive integer d and bounded x, z.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The 3-Part of Class Numbers of Quadratic Fields

In 1801, Gauss published Disquisitiones Arithmeticae, which, among many other things, develops genus theory, describing the divisibility by 2 of class numbers of quadratic fields. In the centuries since this work, the divisibility properties of class numbers by integers g ≥ 3 have largely remained mysterious. In particular, the problem of bounding the g-part hg(D) of class numbers of quadratic ...

متن کامل

On the real quadratic fields with certain continued fraction expansions and fundamental units

The purpose of this paper is to investigate the real quadratic number fields $Q(sqrt{d})$ which contain the specific form of the continued fractions expansions of integral basis element  where $dequiv 2,3( mod  4)$ is a square free positive integer. Besides, the present paper deals with determining the fundamental unit$$epsilon _{d}=left(t_d+u_dsqrt{d}right) 2left.right > 1$$and  $n_d$ and $m_d...

متن کامل

A Bound for the Nilpotency Class of a Lie Algebra

In the present paper, we prove that if L is a nilpotent Lie algebra whose proper subalge- bras are all nilpotent of class at most n, then the class of L is at most bnd=(d 1)c, where b c denotes the integral part and d is the minimal number of generators of L.

متن کامل

Sieve Methods

Preface Sieve methods have had a long and fruitful history. The sieve of Eratosthenes (around 3rd century B.C.) was a device to generate prime numbers. Later Legendre used it in his studies of the prime number counting function π(x). Sieve methods bloomed and became a topic of intense investigation after the pioneering work of Viggo Brun (see [Bru16],[Bru19], [Bru22]). Using his formulation of ...

متن کامل

A class of Artinian local rings of homogeneous type

‎Let $I$ be an ideal in a regular local ring $(R,n)$‎, ‎we will find‎ ‎bounds on the first and the last Betti numbers of‎ ‎$(A,m)=(R/I,n/I)$‎. ‎if $A$ is an Artinian ring of the embedding‎ ‎codimension $h$‎, ‎$I$ has the initial degree $t$ and $mu(m^t)=1$‎, ‎we call $A$ a {it $t-$extended stretched local ring}‎. ‎This class of‎ ‎local rings is a natural generalization of the class of stretched ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005